
Zimbra™ Infrastructure Orchestration
continuous availability and scalability through automation

Jared Reimer, CTO
Cascadeo Corporation

jared@cascadeo.com

Quick Agenda ~30 minutes + Q&A

❏ Intro / Bio; Asks & Promises

❏ A Brief History of High-Availability Systems

❏ The End of the Runway (is always closer than it looks)

❏ Compromise Thoughtfully

❏ A Solution Architecture for Zimbra™ Orchestration

❏ Q&A / Open Discussion

100% of All Infrastructure Fails Eventually

Firefighting in Production

The A380 and the Tesla GigaFactory

A Brief History of High-Availability Strategies

❏ Active:Standby / failover / data replication

❏ Active:Standby:Witness / quorum

❏ Active:Active / load-sharing

❏ Active:Active:Active / stateless server infrastructure

❏ N-active + passive failover / GTM

Why Even 3x Redundancy Isn’t Always Enough

❏ Black Swan events happen every single day
❏ Cascading failures due to tight coupling
❏ Shared storage and network assets
❏ DNS, Humans, and many other SPOFs that won’t go away

❏ Complex systems will fail in unpredictable ways
❏ Partial failures often worse than total failure
❏ Some bugs occur rarely and are hard to repro in lab

❏ Humans are often our own worst enemies
❏ “The road to hell is paved with good intentions”

The End of the Runway for Conventional Ops

❏ Legacy cruft piles up by iterative patching
❏ Unknown security and ops history; entropy is the enemy
❏ Total inability to detect modern rootkits / malware

❏ No repeatability = no recoverability
❏ Documentation is always wrong when you need it most
❏ Most DR/BC systems rarely exercised in production
❏ One-offs and customizations are incompatible with SaaS

❏ Band-aids always fossilize into permanent fixtures
❏ Focus rarely returns after the fire-drill ends
❏ Refactoring hand-built IT: the job no dev wants

No Easy Answers?
❏ Availability, Durability, Scalability, $ goals at odds

❏ Many Zimbra user populations with very different needs

❏ No single “correct answer” to the core problems
❏ Lower-level infrastructure redundancy (cost)
❏ Higher-level data & application redundancy (complexity)
❏ Automation is not free and sometimes overkill

❏ Existing deployments and infrastructure have value
❏ Preserve value in existing investments and talent pool
❏ Provide a clear migration path to public / private cloud
❏ Don’t force the hand of the customer or impose platform

Make Thoughtful Compromises to Scale

DURABILITY

What is your
worst case
tolerance for
data loss?

Loss !=
temporary
inability to
access data.

SECURITY

Incidents
inevitable.

Aim for
limited
blast
radius.

Limit
human
access.

AVAILABILITY

Understand
what “good
enough” is.

Endpoints
responsive
in all failure
scenarios.

SCALABILITY

Spread
traffic across
parallel
production
stacks.

Shard the
workload;
rebalance
continuously

Service Oriented Computing using Microservices

Publish-Subscribe

Workflow

Polling

Event Driven

Presentation

Logic

Programmatic

Microservices

Data stores

Object stores
Workers

Metadata

A solution is a
collection of

microservices
split into three

primary
categories:

Coordination,
Interaction

and
Services

Immutable Deployments

Changes to
production systems
are always delivered
through controlled
replacement
operations.

Continuous Deployment w/ Spinnaker

Spinnaker provides automated pipelines for continuous delivery.

CD Pipeline for Zimbra™ Server Groups

Scaling Stateful and Stateless Microservices

Example: Four-Node Kubernetes cluster

Spontaneous / Uncontrolled Node Failure

Automated Stabilization and Remediation

Prove, every single day, that our
self-healing capability is functioning
as expected... (Thanks, Netflix!)

Continuous Stress Testing

Faults that repeatedly
fail to clear themselves
are likely bugs.

DR/BC strategy is
exercised continuously,
in production.

Predictive Analytics & Anomaly Detection

Machine learning
algorithms detect
subtle changes and
relationships
between a wide
range of signals.

Predict and repair
faults -- often
before they become
impactful.

Disturbances in the Force

❏ a picture is worth a thousand words
❏ if a derivative falls in the woods and nobody hears it...

XXXXXXXX XXXXXXXXXX XXXXXXXXX XXXXXX XXXX XX XXXXX XXXX

Summary and Key Conclusions

❏ Continuous Delivery and Stress Testing
❏ Deploy / replace rather than “fixing things” by hand
❏ Repeated faults are bugs, not ops incidents.

❏ No Repeatability = No Recoverability
❏ Configuration treated as code and deployed accordingly
❏ Band-aids are quickly replaced by automation

❏ Understand the Worst Case and Work Backwards
❏ How much is “good enough”?
❏ What is an acceptable brown-out or loss window?
❏ Limit the blast radius and preserve the user experience!

Open Discussion / Q&A / Thanks!

email welcomed jared@cascadeo.com
 or iMessage / SMS +1 (206) 650-7090

